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Abstract—This paper presents the application of different
spectral methods, like Fourier series and polynomial-based ex-
pansions, to Digital Elevation Models (DEMs) in order to fuse
their content. Two different fusion techniques: 1) a filter-based
one and 2) a weighted average of expansion coefficients, are
examined. Their performance is evaluated by using both ground-
truth lidar data as well as fusion quality measures. The results
point out that polynomial-based spectral expansions perform
better than the traditional Fourier approach.

I. INTRODUCTION

Acquiring and utilizing high quality Digital Elevation Model

(DEM) data is very critical for various types of commercial

and scientific applications such as environmental monitoring,

topographic analysis and mapping, communication modeling

and remote sensing. Multiple sensor technologies have been

developed and used for generating these models, including

aerial stereo photography, airborne laser scanning and radar

interferometry. However, depending on the selected type of

sensor and technology used, various and different types of

errors are introduced to the extracted DEM [1]. Other chal-

lenging issues of DEM post processing include grid spacing

and interpolation methodologies [2], [3].

Despite their importance very limited open source models

are available offering global coverage. Two of the most widely

used models are the SRTM which offers 1′′ and 3′′ resolution

for the USA and rest regions, respectively, and the ASTER

GDEM which offers a 30m global resolution [4]. Due to the

different providers of the aforementioned DEMs, their resolu-

tion, accuracy, and error characteristics vary a lot, making a

challenging task the usage of both models for better and more

efficient model representation.

By applying DEM fusion, their accuracy and resolution can

be significantly improved along with their homogeneity and

completeness [5]. Several methods have been proposed in the

literature in order to perform such a fusion between ASTER

and SRTM DEMs. In [6], the developed method applies a

histogram shifting to the average elevation of the SRTM

DEM, co-registering the relative ASTER DEM to the SRTM

coordinates and filling the voids in the DEMs by an erosion

technique from surrounding pixels. Two fusion methods are

presented in [7], where the appropriate fusion weights are

determined from sparse representations of local DEM patches,

by minimizing their deviations assuming that are represented

in a same sparse combination. A fusion method by considering

DEM quality through a weighted sum is proposed also in [8].

The produced model presents a geomorphological enhance-

ment by generating trend surfaces as low frequency functions.

In this paper, two fusion strategies are presented, utiliz-

ing several spectral methods for acquiring improved DEM

data. Traditionally, the most widely used spectral method

is the Fourier expansion. However, several polynomial-based

spectral expansions can also be successfully applied [9]. The

proposed fusion strategies and the examined spectral methods

are evaluated through a ground truth Lidar dataset and a

comparative analysis is carried out in terms of DEM quality

and consistency.

II. SPECTRAL METHODS

This section presents some basic theory on the computation

of spectral methods, such as the discrete Fourier and Cosine

Transform (DFT, DCT, respectively) [10] as well as Cheby-

chev (CheT) [11] of first kind, Tchebichef (TchT) [12] and

Legendre (LegT) [13] polynomial-based spectral expansions.

The Chebyshev and Legendre are polynomials of continuous

variable, while the Tchebichef is a polynomial family of

discrete variable. It should also be noted that no classification

between spectral and pseudo-spectral method takes place in

this work.

Any N × M sized 2D digital signal (e.g. a DEM or an

image), which may be perceived as a piecewise continuous

function f(t, k) of finite energy, can be approximately ex-

panded as

f(t, k) ≈
N−1∑
n=0

M−1∑
m=0

Kernel∗nm(yt, xk) · Cnm (1)

where n ∈ [0, N − 1] ⊂ Z, m ∈ [0,M − 1] ⊂ Z and {Cnm}
are the expansion coefficients given by

Cnm = WnWm

N−1∑
k=0

M−1∑
t=0

Kernelnm(yt, xk) · f(t, k) (2)

Kernelnm(yt, xk) is formed using separable basis functions,

while the star symbol (*) in Eq. (1) denotes complex con-

jugation. Wn and Wm are weighting factors, which depend

on both the used kernel function and the orders (n, m).

As basis function can be used any finite orthogonal set

{φn(x) |x ∈ [α, β] ⊂ R, n ∈ Z} such that

Kernelnm(yt, xk) = φm(yt)φn(xk) (3)



It should also be noted that Eqs. (2) and (1) constitute the

forward and inverse spectral transform, respectively.

A. Kernel Functions

Taking into account Eq. (3) and supposing that N and M
are the 2D signal dimensions, the mathematical background

required to calculate the basis set {φn(xk)} is presented.

Similarly, by replacing k, x, n and N with t, y, m and M ,

respectively, the set {φm(yt)} can be calculated.

1) Fourier:

φn(xk) = e−inxk , xk ∈ [0, 2π]

and

Wn =
1

N
, xk =

2πk

N
, k = 0, 1, ..., N − 1

2) Cosine:

φn(xk) = ωn · cos(nxk) , xk ∈ [0, π]

where

ωn =

⎧⎨
⎩

1√
N
, n = 0√
2
N , 1 ≤ n < N

and

Wn = 1 , xk =
π(k + 1

2 )

N
, k, n = 0, 1, ..., N − 1

3) Tchebichef:

φn(xk) = Pn(xk) , xk ∈ [0, N − 1]

where

Pn(x) = A1Pn(x− 1) +A2Pn(x− 2)

and

A1 =
−n(n+ 1)− (2x− 1)(x−N − 1)− x

x(N − x)

A2 =
(x− 1)(x−N − 1)

x(N − x)

Pn(0) =
(1−N)n
β(n,N)

, Pn(1) = Pn(0)

(
1 +

n(n+ 1)

1−N

)

(a)k is the Pochhammer symbol given by

(a)k = a · (a+ 1) · ... · (a+ k − 1)

and

β(n,N) =
√
ρ(n,N)

ρ(n,N) =
N · (N2 − 1) · (N2 − 22) · ... · (N2 − n2)

2n+ 1

Wn = 1 , xk = k , k, n = 0, 1, ..., N − 1

4) Chebyshev:

φn(xk) = Pn(xk) , xk ∈ [−1, 1]

where

Pn+1(x) = 2xPn(x)− Pn−1(x)

and

Wn =

{
1
N n = 0
2
N 1 ≤ n < N

, xk = cos(π
k + 1

2

N
)

k, n = 0, 1, ..., N − 1

5) Legendre: For the case of Legendre spectral expansion,

the φn(xk) which is used in the forward transform is given

by

φn(xk) =
2n+ 1

2n+ 2

[
(ukPn(uk)− Pn−1(uk)) −
(ûkPn(ûk)− Pn−1(ûk))

]

while for the inverse transform, φn(xk) equals to

φn(xk) = Pn(xk)

where

uk = xk +
1

N
, ûk = xk − 1

N

xk ∈ (−1, 1) , ûk ∈ [−1, 1) , uk ∈ (−1, 1]

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)− n

n+ 1
Pn−1(x)

P0(x) = 1 , P1(x) = x

and

Wn = 1 , xk =
2k + 1

N
− 1 , k, n = 0, 1, ..., N − 1

III. FUSION PROCESS

This section presents the process followed to fuse two

DEMs. It is supposed that the DEMs are registered and no

void areas occur.

Step 1 - Preprocessing: In the case where the used DEMs

are characterized by different resolution, then the DEM with

the lower one must be interpolated. In this work the cubic

interpolation is adopted, nevertheless, other methods could

also be used [14]–[16].

Step 2 - Forward Transform: The second step is to apply

the forward transform of a spectral expansion method, like

the ones described in section II, to the DEMs. This process

projects the content of DEMs onto an orthogonal basis trans-

forming the spatial information to a set of spectral/frequency

coefficients {Cnm}.



Fig. 1. Fusion process.

Fig. 2. Error measurement process between the DEMs resulted from the two
fusion methods and the lidar data.

Step 3 - Fused Coefficients: In this step, the expansion

coefficients of all the used DEMs ({Ci
nm}, i = 1, 2, ..., k,

k: the number of different DEMs) are processed in order to

form a new coefficient set, {Cnm}. Two different methods of

coefficients fusion are considered:

1) In the first one, each coefficient set subject to some

filtering method. The main idea is to merge coarse

and fine terrain features from different DEM sources.

Since DEMs are 2D signals, four different coefficient

thresholds, t11, t12, t21 and t22, must be used in order to

define low, high or band pass filters for both dimensions.

Supposing that �t = [t11 t12 t21 t22] is the vector of

thresholds and F (Ci
nm,�t ) is a filtering operator repre-

senting all the aforementioned filter types, then, when

k DEMs are used, the fused coefficients set can be

calculated by

Cnm =

k∑
i=1

F (Ci
nm,�t )

For the case of two different DEMs as well as for t11 =

t12 and t21 = t22 (which implies than only low and

high-pass filters can be defined), the fusion process is

illustrated in the ”1st Fusion Method” of Fig. (1).

2) In the second fusion method, no filtering process takes

place, instead, a weighted average of coefficients expan-

sion is used. Weighting factors, wi where
∑k

i=1 wi = 1,

applied to the corresponding {Cnm} sets, lead to the new

fused set {Cnm} according to the following equation:

Cnm =

k∑
i=1

wiC
i
nm

For the case of two different DEMs, the ”2nd Fusion

Method” is illustrated in the Fig. (1).

Step 4 - Inverse Transform: The final step, in order to fuse

two or more DEMs, is to apply the inverse spectral transform

to the fused coefficient set {Cnm} in order to return to spatial

domain.

IV. EXPERIMENTAL STUDY

In this section, a performance comparative analysis of

different spectral methods is presented. Two DEMs (SRTM

[17], [18] - Resolution (RES): 90m, Absolute Vertical Ac-
curacy (AVA): 16m - & ASTER [19] - RES: 30m, AVA:
20m) are used as inputs into the formerly presented fu-

sion methodology. The studied geographic area (Longitude
range: 2o24′00.0”W to 2o25′48.0”W and Latitude range:
43o18′00.0”N to 43o19′48.0”N ) has been selected due to the

availability of lidar DEM [20] data with 1m resolution. These

data are used as ground-truth in order to calculate the Mean

Absolute Error (MAE) of the fused as well as initial DEMs

(see Tables (I) and (II)).



TABLE I
1ST FUSION METHOD: MEAN ABSOLUTE ERROR OF FUSED DEMS AND

INITIAL DEMS (interpolated SRTM & original ASTER) WITH RESPECT TO

GROUND TRUTH LIDAR DEMS

Mean Absolute Error

Spectral Methods
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0.01 6.02 5.99 6.02 6.02 6.02
0.02 5.84 5.82 5.85 6.02 5.84
0.03 5.73 5.69 5.72 6.03 5.73
0.04 5.69 5.61 5.64 6.03 5.69
0.05 5.82 5.83 5.86 5.88 5.82
0.06 5.72 5.99 6.02 5.88 5.72
0.07 5.66 5.99 6.02 5.85 5.66
0.08 5.87 6.03 6.07 5.87 5.87
0.09 6.22 6.09 6.13 5.87 6.22
0.10 6.11 6.17 6.21 5.87 6.11
0.15 6.26 6.28 6.35 5.94 6.26
0.20 6.20 6.34 6.39 6.22 6.20
0.25 6.28 6.33 6.36 6.25 6.28
0.30 6.28 6.25 6.29 6.31 6.28
0.35 6.29 6.25 6.30 6.34 6.29
0.40 6.24 6.25 6.29 6.32 6.24
0.45 6.15 6.21 6.24 6.32 6.15
0.50 6.15 6.16 6.21 6.33 6.15

Initial DEMs

SRTM 5.94
ASTER 6.02

A. Protocol

Since the used DEMs, SRTM, ASTER and the lidar data

are characterized by different resolution, two interpolation

processes should be conducted. Thus, a cubic and a nearest

neighbor interpolation [15], [21] take place in order to properly

scale the SRTM and lidar DEM, respectively.
1) 1st Fusion Method: As has already been mentioned two

different fusion methods are studied. In the first one, the low-

pass filter of Eq. (4) is applied on SRTM data, while the high-

pass of Eq. (5) is applied on ASTER DEM.

LF (C1
nm, k, 	) =

⎧⎪⎨
⎪⎩
C1

nm

0 ≤ n ≤ k

0 ≤ m ≤ 	

0 otherwise

(4)

HF (C2
nm, k, 	) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 otherwise

C2
nm

0 ≤ n ≤ N − 1

	 ≤ m ≤ N − 1

C2
nm

k ≤ n ≤ N − 1

0 ≤ m ≤ N − 1

(5)

Ci
nm, where i = 1, 2 (1: SRTM & 2: ASTER), is the

(n+m)-th order spectral coefficient, k and 	 are the threshold

TABLE II
2ND FUSION METHOD: MEAN ABSOLUTE ERROR OF FUSED DEMS AND

INITIAL DEMS (interpolated SRTM & original ASTER) WITH RESPECT TO

GROUND TRUTH LIDAR DEMS

Mean Absolute Error

Spectral Methods
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0.05 5.86 5.83 5.86 5.85 5.86
0.10 5.71 5.69 5.71 5.70 5.71
0.15 5.57 5.57 5.57 5.57 5.57
0.20 5.46 5.46 5.46 5.46 5.46
0.25 5.37 5.37 5.37 5.36 5.37
0.30 5.29 5.30 5.29 5.29 5.29
0.35 5.24 5.25 5.24 5.24 5.24
0.40 5.20 5.22 5.20 5.20 5.20
0.45 5.18 5.20 5.18 5.18 5.18
0.50 5.17 5.20 5.17 5.17 5.17
0.55 5.19 5.21 5.19 5.18 5.19
0.60 5.21 5.24 5.21 5.21 5.21
0.65 5.25 5.29 5.25 5.25 5.25
0.70 5.31 5.35 5.31 5.31 5.31
0.75 5.38 5.42 5.38 5.38 5.38
0.80 5.47 5.50 5.47 5.47 5.47
0.85 5.57 5.60 5.57 5.57 5.57
0.90 5.68 5.71 5.68 5.68 5.68
0.95 5.80 5.83 5.80 5.80 5.80

Initial DEMs

SRTM 5.94
ASTER 6.02

values, while N and M are the signal dimensions. The fused

coefficients are calculated as

Cnm = LF (C1
nm, k, 	) +HF (C2

nm, k, 	) (6)

By applying the inverse transform to the set {Cnm}, the fused

DEM, using the 1st fusion method, is produced.

In order to have a qualitative assessment of how close or

far from zero value the thresholds k and 	 are, we set

pik =
k

N − 1
, pi� =

	

M − 1

Since k ∈ [0, N − 1] and 	 ∈ [0,M − 1], then pik, p
i
� ∈ [0, 1].

By attributing such values to k and 	, so as pik = pi� =
{0.01, 0.02, ..., 0.1, 0.15, ..., 0.5}, and measuring the Mean

Absolute Error (MAE) between the fused and the ground-truth

DEM, the corresponding results are presented in Table (I). The

above process is graphically illustrated in Figs. (1) and (2)

2) 2nd Fusion Method: In the second fusion method a

weighted average of expansion coefficients is used in order to

create the fused DEM. The fused coefficients are calculated

using Eq. (7).

Cnm = w1C
1
nm + w2C

2
nm (7)
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Fig. 3. DEMs illustration for quality assessment of their resolution: (1) SRTM,
(2) ASTER, (3) Fused, (4) Lidar. (The colorbar scale is in meters.)

w1 and w2 are the weighting factors of the SRTM and ASTER

expansion coefficients, respectively, for which it holds that

w1 + w2 = 1. By applying the inverse transform to the set

{Cnm}, the fused DEM, using the 2nd fusion method, is

produced.

By attributing the values {0.05, 0.1, 0.15, ..., 0.95} to the

weight w1 and taking into account that w2 = 1 − w1, the

corresponding MAE results between the fused and the ground-

truth DEM are presented in Table (II). The above process is

graphically illustrated in Figs. (1) and (2).
3) Other Quality Measures: Except using MAE, as men-

tioned above, the Mutual Information [22], given by Eq. (8),

is also used.

MI(s, a, f) =
I(s, f) + I(a, f)

H(s) +H(a)
∈ [0, 1] (8)

Where s, a and f are the SRTM, ASTER and fused DEMs,

respectively. I(s, f) is the mutual information between s and

f , and H(s) is the entropy of s. Furthermore, Piella’s metrics

(Q, Qw, Qe(α) ∈ [−1, 1]) [23] are very useful for evaluating

the fusion process. The first two fusion quality measures, Q
and Qw, are quite similar, with the second being a weighted

version of the first one. Furthermore, the main difference of

Qe, is that it also takes into account edge information with

the parameter α ∈ [0, 1] expressing the importance of that

information. The closer the value of above measures to 1,

the better the quality of the fused DEM. Table (III) presents

the values of the quality measures for the best setup of the

examined spectral methods.

Finally, for the qualitative assessment of the used DEMs as

well as the spread of square error across the fused result, Figs.
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Fig. 4. Square Error between the best fused DEMs and lidar data: (1) 1st
fusion method, (2) 2nd fusion method. (The colorbar scale is in meters.)

(3) and (4) present shaded relief DEMs and error plots.

TABLE III
QUALITY MEASURES FOR THE BEST FUSION SETUPS.

Spectral Methods
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Q 1st 0.647 0.660 0.674 0.591 0.647
2nd 0.723 0.706 0.723 0.621 0.723

Qw 1st 0.659 0.648 0.651 0.622 0.659
2nd 0.724 0.719 0.724 0.659 0.724

Qe 1st 0.674 0.677 0.678 0.632 0.674
2nd 0.757 0.753 0.757 0.692 0.757

MI 1st 0.574 0.581 0.589 0.590 0.574
2nd 0.607 0.603 0.607 0.599 0.607

B. Results Evaluation

By examining Tables (I), (II) and (III) as well as Fig. (4), it

can be directly concluded that the 2nd fusion method results in

better fused output. The performance of the 2nd method owed

to the fact that, unlike the 1st one, it combines all the spectral

components from both DEMs. However, both methods lead

to an output with improved vertical accuracy than the initial

inputs.

Although the examined spectral methods present similar

fusion performance in terms of MAE, an interesting result

arises from Table (III). In this table, it can be seen that the

Chebyshev, Tchebichef and Cosine expansions lead to better

conveyance of edge and textural content to the fusion DEM,

than the ones of Fourier and Legendre.

At this point, it should be noted that the Chebyshev and

Cosine transforms results in identical behavior. This is ex-

pected, since the Chebyshev polynomial of first kind equals

to Tn(xk) = cos(n · arccos(xk)) and that, as stated in

Section (II), xk = cos(π
k+ 1

2

N ), then Tn(xk) = cos(n ·
arccos(cos(π

k+ 1
2

N ))) = cos(nπ
k+ 1

2

N ) leading to the Cosine

transform.



V. CONCLUSIONS

In this work five spectral methods are compared on the

basis of DEM fusion and to the best of our knowledge, it is

the first time that Chebyshev, exact Legendre, and Tchebichef

expansions are used for such purpose. Additionally, two dif-

ferent fusion methods are considered: 1) filter-based and 2)

weighted average, with the second to outperform the first one.

Furthermore, a variety of measures, such as MAE based on

lidar ground-truth as well as Mutual Information and Piella’s

metrics, has been used. Finally, a compact presentation of the

forward and inverse transforms of the used spectral methods,

is given. The success of the used spectral expansions triggers

their investigation in more sophisticated fusion methodologies.
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